Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
In Vivo ; 36(6): 2689-2699, 2022.
Article in English | MEDLINE | ID: covidwho-2100678

ABSTRACT

BACKGROUND/AIM: The rapid spread of COVID-19 resulted in the revision of the value of ultraviolet C (UVC) sterilization in working spaces. This study aimed at re-evaluating the anti-UVC activity of four groups of natural products against human melanoma COLO679 and human normal dermal fibroblast (HDFa) cells, based on chemotherapeutic index. MATERIALS AND METHODS: Various cell lines were exposed to UVC for 3 min in the presence of increasing concentrations of test compounds and viable cell numbers were determined with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The anti-UVC activity was quantified by the ratio of the 50% cytotoxic concentration (determined without irradiation) to the 50% effective concentration (which abolished by 50% the UVC-induced loss of viability). Apoptosis was quantified as the subG1 population proportion following cell-cycle analysis. RESULTS: Among four groups of major natural products, six phenylpropanoids showed the highest anti-UVC activity, followed by the lignified products and alkaline products that contain lignin and its degradation products. On the other hand, tannins and flavonoids showed lower activity due to their higher cytotoxicity. UVC-sensitive COLO679 cells lack dectin-1 protein expression. CONCLUSION: These data suggest the prominent anti-UVC activity of lignin degradation products, and the possible involvement of dectin-1 expression in UVC-sensitivity.


Subject(s)
Biological Products , COVID-19 , Melanoma , Humans , Lignin/pharmacology , Ultraviolet Rays , Biological Products/pharmacology
2.
European Journal of Inflammation ; 20, 2022.
Article in English | EMBASE | ID: covidwho-1938133

ABSTRACT

Objectives: The development of effective targeted therapy and drug-design approaches against the SARS-CoV-2 is a universal health priority. Therefore, it is important to assess possible therapeutic strategies against SARS-CoV-2 via its most interaction targets. The present study aimed to perform a systematic review on clinical and experimental investigations regarding SARS-COV-2 interaction targets for human cell entry. Methods: A systematic search using relevant MeSH terms and keywords was performed in PubMed, Scopus, Embase, and Web of Science (ISI) databases up to July 2021. Two reviewers independently assessed the eligibility of the studies, extracted the data, and evaluated the methodological quality of the included studies. Additionally, a narrative synthesis was done as a qualitative method for data gathering and synthesis of each outcome measure. Results: A total of 5610 studies were identified, and 128 articles were included in the systematic review. Based on the results, spike antigen was the only interaction protein from SARS-CoV-2. However, the interaction proteins from humans varied including different spike receptors and several cleavage enzymes. The most common interactions of the spike protein of SARS-CoV-2 for cell entry were ACE2 (entry receptor) and TMPRSS2 (for spike priming). A lot of published studies have mainly focused on the ACE2 receptor followed by the TMPRSS family and furin. Based on the results, ACE2 polymorphisms as well as spike RBD mutations affected the SARS-CoV-2 binding affinity. Conclusion: The included studies shed more light on SARS-CoV-2 cellular entry mechanisms and detailed interactions, which could enhance the understanding of SARS-CoV-2 pathogenesis and the development of new and comprehensive therapeutic approaches.

3.
J Fungi (Basel) ; 8(4)2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-1809976

ABSTRACT

Mucormycosis (a.k.a. zygomycosis) is an often-life-threatening disease caused by fungi from the ancient fungal division Mucoromycota. Globally, there are nearly a million people with the disease. Rhizopus spp., and R. delemar (R. oryzae, R. arrhizus) in particular, are responsible for most of the diagnosed cases. Pulmonary, rhino-orbito-cerebral, and invasive mucormycosis are most effectively treated with amphotericin B (AmB) and particularly with liposomal formulations (e.g., AmBisome®). However, even after antifungal therapy, there is still a 50% mortality rate. Hence, there is a critical need to improve therapeutics for mucormycosis. Targeting AmB-loaded liposomes (AmB-LLs) with the pathogen receptor Dectin-1 (DEC1-AmB-LLs) to the beta-glucans expressed on the surface of Aspergillus fumigatus and Candida albicans lowers the effective dose required to kill cells relative to untargeted AmB-LLs. Because Dectin-1 is an immune receptor for R. delemar infections and may bind it directly, we explored the Dectin-1-mediated delivery of liposomal AmB to R. delemar. DEC1-AmB-LLs bound 100- to 1000-fold more efficiently to the exopolysaccharide matrix of R. delemar germlings and mature hyphae relative to AmB-LLs. DEC1-AmB-LLs delivering sub-micromolar concentrations of AmB were an order of magnitude more efficient at inhibiting and/or killing R. delemar than AmB-LLs. Targeted antifungal drug-loaded liposomes have the potential to improve the treatment of mucormycosis.

SELECTION OF CITATIONS
SEARCH DETAIL